- 1. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1-57 (2009).
- 2. J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
- 3. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams.” Opt. Express 7, 77–87 (2000).
- 4. B. Gu, Y. Pan et. al., “Tight focusing properties of spatial-variant linearly-polarized vector beams,” J. Opt. 43, 18-27 (2014).
- 5. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45, 470 (2006).
- 6. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
- 7.Kozawa, Y. and S. Sato. “Focusing property of a double-ring-shaped radially polarized beam.” Optics letters 31 6 (2006): 820-2.
- 8.Wang, Haifeng et al. “Creation of a needle of longitudinally polarized light in vacuum using binary optics.” Nature Photonics 2 (2008): 501-505.
- 9. X. Wang, J. Chen, Y. Li, J. Ding, C. Guo, and H. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
- 10. O'Neil, A. T. et al. “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam.” Phys. Rev. Lett. 88(5), 053601 (2002).
- 11. X. Ling, X. Yi, X. Zhou, Y. Liu, W. Shu, H. Luo, and S. Wen, “Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect,” Appl. Phys. Lett. 105, 151101 (2014).
- 12. Bliokh, K. et al. “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems.” Opt. Express 19(27), 26132-26149 (2011).
- 13. Devlin, R. C. et al. “Arbitrary spin-to–orbital angular momentum conversion of light.” Science 358, 896-901 (2017).
- 14. Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104, 191110 (2014).
- 15. Chen, Rui et al. “Compact generation of arbitrarily accelerating double caustic beams with orthogonal polarizations using a dielectric metasurface.” Opt. Lett. 45, 551-554 (2020).
- 16. He, Yanliang et al. “Switchable phase and polarization singular beams generation using dielectric metasurfaces.” Scientific Reports 7 (2017): n. pag.
- 17. Kotlyar, V. et al. “Orbital angular momentum of a laser beam behind an off-axis spiral phase plate,” Opt. Lett. 44(15), 3673-3676 (2019).
- 18. Kovalev, A. and V. Kotlyar. “Orbital angular momentum of an elliptic beam after an elliptic spiral phase plate,” J. Opt. Soc. Am. A 36(1), 142-148 (2019).
- 19. W. B. Yun and M. R. Howells, “High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication,” J. Opt. Soc. Am. A 4, 34–40 (1987).
- 21. Sabatyan, A.. “Comprehensive focusing analysis of bi-segment spiral zone plate in producing a variety of structured light beams,” J. Opt. Soc. Am. B 36, 3111-3116 (2019).
- 22. Dennis, M. et al. “Singular optics: optical vortices and polarization singularities.” Progress in Opt. 53, 293-363 (2009).
- 20.Gbur, G.. “Fractional vortex Hilbert's Hotel.” arXiv: Optics (2015): 222-225.
- 23. G. Gbur, “Fractional vortex Hilbert’s Hotel,” Optica 3(3), 222-225 (2016).
- 24. Selyem, Adam et al. “Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by Stokes projections.” Phys. Rev. A 100, 063842 (2019).
- 25. Fang, Y. et al. “Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale,” Phys. Rev. A 95, 023821 (2017).
- 26. Li, P. et al. “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205-2208 (2016).
- 27. Moreno, I. et al. “Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator,” Opt. Lett. 41(6), 1305-1308 (2016).
- 28. Liu, S. et al. “Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude.” Photon. Res. 6, 228-233 (2018).
- 29. Wang, Xi-Lin et al. “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549-3551 (2007).
- 30. Xu, D. et al. “Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.” Opt. Express 24(4), 4177-4186 (2016).
- 31. Rosales-Guzm'an, C. et al. “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697-25706 (2017).
- 32. Vyas, S. et al. “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane.” J. Opt. Soc. Am. A 28(5), 837-843 (2011).
- 33. Gu, B. and Y. Cui. “Nonparaxial and paraxial focusing of azimuthal-variant vector beams,” Opt. Express 20(16), 17684-17694 (2012).
- 34. Ren, Jin-Li et al. “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
- 35. Krishna, C. H. and S. Roy. “Polarization singular patterns in modal fields of few-mode optical fiber,” J. Opt. Soc. Am. B 37, 2688-2695 (2020).
- 36. Zhao, Yiqiong et al. “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
- 37. Zeng, Jun et al. “Partially coherent radially polarized fractional vortex beam,” Opt. Express 28(8), 11493-11513 (2020).
- 38. Zeng, T. and Jianping Ding. “Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized beams.” Chin. Opt. Lett. 16, 031405 (2018).
- 39. Feng, L. et al. “All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere,” Photon. Res. 8, 1268-1277 (2020).
- 40. Angulo, M. et al. “Propagation of partially coherent truncated polymorphic beams,” Opt. Lett. 44, 2621-2624 (2019).
- 41. Wan, Zhensong et al. “Quadrant-separable multi-singularity vortices manipulation by coherent superposed mode with spatial-energy mismatch,” Opt. Express 26(26), 34940-34955 (2018).
- 42. Khonina, S. et al. “Sector sandwich structure: an easy-to-manufacture way towards complex vector beam generation,” Opt. Express 28(19), 27628-27643 (2020).
- 43. Mendoza-Hernández, J. et al. “Perfect Laguerre-Gauss beams,” Opt. Lett. 45(18), 5197-5200 (2020).
- 44. Meng, P. et al. “Angular momentum properties of hybrid cylindrical vector vortex beams in tightly focused optical systems,” Opt. Express 27(24), 35336-35348 (2019).
- 45. Guo, C. et al. “Dynamic control of cylindrical vector beams via anisotropy,” Opt. Express, 26(14), 18721-18733 (2018).
- 46. Moreno, I. et al. “Vector Beam Polarization State Spectrum Analyzer.” Sci. Rep. 7 (2017): n. pag.
- 47. Liang, Yansheng et al. “Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams,” Opt. Lett. 44(6), 1504-1507 (2019).
- 48. Suzuki, M. et al. “Generation of arbitrary axisymmetrically polarized pulses by using the combination of 4-f spatial light modulator and common-path optical system,” Opt. Express 26(3), 2584-2598 (2018).
- 49. Milione, G. et al. “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887-4890 (2015). 47. Li, P. et al. “Polarization oscillating beams constructed by copropagating optical frozen waves,” Photon. Res. 6, 756-761 (2018).
- 50. Volyar, A. et al. “Orbital angular momentum and informational entropy in perturbed vortex beams.” Opt. Lett. 44(23), 5687-5690 (2019).
- 51. Devlin, R. C. et al. “Arbitrary spin-to–orbital angular momentum conversion of light.” Science 358, 896-901 (2017).