From Bo, 3 Years ago, written in Plain Text.
This paste is a reply to Polarization evolution of vector beams generated b from WEIXING SHU - view diff
Embed
  1. 1. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1-57 (2009).
  2. 2. J. Chen, C. Wan, and Q. Zhan, “Vectorial optical fields: recent advances and future prospects,” Sci. Bull. 63(1), 54–74 (2018).
  3. 3. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams.” Opt. Express 7, 77–87 (2000).
  4. 4. B. Gu, Y. Pan et. al., “Tight focusing properties of spatial-variant linearly-polarized vector beams,” J. Opt. 43, 18-27 (2014).
  5. 5. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark-field imaging with cylindrical-vector beams,” Appl. Opt. 45, 470 (2006).
  6. 6. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
  7. 7.Kozawa, Y. and S. Sato. “Focusing property of a double-ring-shaped radially polarized beam.” Optics letters 31 6 (2006): 820-2.
  8. 8.Wang, Haifeng et al. “Creation of a needle of longitudinally polarized light in vacuum using binary optics.” Nature Photonics 2 (2008): 501-505.
  9. 9. X. Wang, J. Chen, Y. Li, J. Ding, C. Guo, and H. Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105, 253602 (2010).
  10. 10. O'Neil, A. T. et al. “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam.” Phys. Rev. Lett. 88(5), 053601 (2002).
  11. 11. X. Ling, X. Yi, X. Zhou, Y. Liu, W. Shu, H. Luo, and S. Wen, “Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect,” Appl. Phys. Lett. 105, 151101 (2014).
  12. 12. Bliokh, K. et al. “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems.” Opt. Express 19(27), 26132-26149 (2011).
  13. 13. Devlin, R. C. et al. “Arbitrary spin-to–orbital angular momentum conversion of light.” Science 358, 896-901 (2017).
  14. 14. Y. Liu, X. Ling, X. Yi, X. Zhou, H. Luo, and S. Wen, “Realization of polarization evolution on higher-order Poincaré sphere with metasurface,” Appl. Phys. Lett. 104, 191110 (2014).
  15. 15. Chen, Rui et al. “Compact generation of arbitrarily accelerating double caustic beams with orthogonal polarizations using a dielectric metasurface.” Opt. Lett. 45, 551-554 (2020).
  16. 16. He, Yanliang et al. “Switchable phase and polarization singular beams generation using dielectric metasurfaces.” Scientific Reports 7 (2017): n. pag.
  17. 17. Kotlyar, V. et al. “Orbital angular momentum of a laser beam behind an off-axis spiral phase plate,” Opt. Lett. 44(15), 3673-3676 (2019).
  18. 18. Kovalev, A. and V. Kotlyar. “Orbital angular momentum of an elliptic beam after an elliptic spiral phase plate,” J. Opt. Soc. Am. A 36(1), 142-148 (2019).
  19. 19. W. B. Yun and M. R. Howells, “High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication,” J. Opt. Soc. Am. A 4, 34–40 (1987).
  20. 21. Sabatyan, A.. “Comprehensive focusing analysis of bi-segment spiral zone plate in producing a variety of structured light beams,” J. Opt. Soc. Am. B 36, 3111-3116 (2019).
  21. 22. Dennis, M. et al. “Singular optics: optical vortices and polarization singularities.” Progress in Opt. 53, 293-363 (2009).
  22. 20.Gbur, G.. “Fractional vortex Hilbert's Hotel.” arXiv: Optics (2015): 222-225.
  23. 23. G. Gbur, “Fractional vortex Hilbert’s Hotel,” Optica 3(3), 222-225 (2016).
  24. 24. Selyem, Adam et al. “Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by Stokes projections.” Phys. Rev. A 100, 063842 (2019).
  25. 25. Fang, Y. et al. “Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale,” Phys. Rev. A 95, 023821 (2017).
  26. 26. Li, P. et al. “Generation of perfect vectorial vortex beams,” Opt. Lett. 41(10), 2205-2208 (2016).
  27. 27. Moreno, I. et al. “Generation of integer and fractional vector beams with q-plates encoded onto a spatial light modulator,” Opt. Lett. 41(6), 1305-1308 (2016).
  28. 28. Liu, S. et al. “Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude.” Photon. Res. 6, 228-233 (2018).
  29. 29. Wang, Xi-Lin et al. “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549-3551 (2007).
  30. 30. Xu, D. et al. “Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.” Opt. Express 24(4), 4177-4186 (2016).
  31. 31. Rosales-Guzm'an, C. et al. “Simultaneous generation of multiple vector beams on a single SLM,” Opt. Express 25(21), 25697-25706 (2017).
  32. 32. Vyas, S. et al. “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane.” J. Opt. Soc. Am. A 28(5), 837-843 (2011).
  33. 33. Gu, B. and Y. Cui. “Nonparaxial and paraxial focusing of azimuthal-variant vector beams,” Opt. Express 20(16), 17684-17694 (2012).
  34. 34. Ren, Jin-Li et al. “Direct observation of a resolvable spin separation in the spin Hall effect of light at an air-glass interface,” Appl. Phys. Lett. 107, 111105 (2015).
  35. 35. Krishna, C. H. and S. Roy. “Polarization singular patterns in modal fields of few-mode optical fiber,” J. Opt. Soc. Am. B 37, 2688-2695 (2020).
  36. 36. Zhao, Yiqiong et al. “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99(7), 073901 (2007).
  37. 37. Zeng, Jun et al. “Partially coherent radially polarized fractional vortex beam,” Opt. Express 28(8), 11493-11513 (2020).
  38. 38. Zeng, T. and Jianping Ding. “Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized beams.” Chin. Opt. Lett. 16, 031405 (2018).
  39. 39. Feng, L. et al. “All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere,” Photon. Res. 8, 1268-1277 (2020).
  40. 40. Angulo, M. et al. “Propagation of partially coherent truncated polymorphic beams,” Opt. Lett. 44, 2621-2624 (2019).
  41. 41. Wan, Zhensong et al. “Quadrant-separable multi-singularity vortices manipulation by coherent superposed mode with spatial-energy mismatch,” Opt. Express 26(26), 34940-34955 (2018).
  42. 42. Khonina, S. et al. “Sector sandwich structure: an easy-to-manufacture way towards complex vector beam generation,” Opt. Express 28(19), 27628-27643 (2020).
  43. 43. Mendoza-Hernández, J. et al. “Perfect Laguerre-Gauss beams,” Opt. Lett. 45(18), 5197-5200 (2020).
  44. 44. Meng, P. et al. “Angular momentum properties of hybrid cylindrical vector vortex beams in tightly focused optical systems,” Opt. Express 27(24), 35336-35348 (2019).
  45. 45. Guo, C. et al. “Dynamic control of cylindrical vector beams via anisotropy,” Opt. Express, 26(14), 18721-18733 (2018).
  46. 46. Moreno, I. et al. “Vector Beam Polarization State Spectrum Analyzer.” Sci. Rep. 7 (2017): n. pag.
  47. 47. Liang, Yansheng et al. “Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams,” Opt. Lett. 44(6), 1504-1507 (2019).
  48. 48. Suzuki, M. et al. “Generation of arbitrary axisymmetrically polarized pulses by using the combination of 4-f spatial light modulator and common-path optical system,” Opt. Express 26(3), 2584-2598 (2018).
  49. 49. Milione, G. et al. “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887-4890 (2015). 47. Li, P. et al. “Polarization oscillating beams constructed by copropagating optical frozen waves,” Photon. Res. 6, 756-761 (2018).
  50. 50. Volyar, A. et al. “Orbital angular momentum and informational entropy in perturbed vortex beams.” Opt. Lett. 44(23), 5687-5690 (2019).
  51. 51. Devlin, R. C. et al. “Arbitrary spin-to–orbital angular momentum conversion of light.” Science 358, 896-901 (2017).
  52.